19 research outputs found

    A range description for the planar circular Radon transform

    Get PDF
    The transform considered in the paper integrates a function supported in the unit disk on the plane over all circles centered at the boundary of this disk. Such circular Radon transform arises in several contemporary imaging techniques, as well as in other applications. As it is common for transforms of Radon type, its range has infinite co-dimension in standard function spaces. Range descriptions for such transforms are known to be very important for computed tomography, for instance when dealing with incomplete data, error correction, and other issues. A complete range description for the circular Radon transform is obtained. Range conditions include the recently found set of moment type conditions, which happens to be incomplete, as well as the rest of conditions that have less standard form. In order to explain the procedure better, a similar (non-standard) treatment of the range conditions is described first for the usual Radon transform on the plane.Comment: submitted for publicatio

    Spherical radon transforms and mathematical problems of thermoacoustic tomography

    Get PDF
    The spherical Radon transform (SRT) integrates a function over the set of all spheres with a given set of centers. Such transforms play an important role in some newly developing types of tomography as well as in several areas of mathematics including approximation theory, integral geometry, inverse problems for PDEs, etc. In Chapter I we give a brief description of thermoacoustic tomography (TAT or TCT) and introduce the SRT. In Chapter II we consider the injectivity problem for SRT. A major breakthrough in the 2D case was made several years ago by M. Agranovsky and E. T. Quinto. Their techniques involved microlocal analysis and known geometric properties of zeros of harmonic polynomials in the plane. Since then there has been an active search for alternative methods, which would be less restrictive in more general situations. We provide some new results obtained by PDE techniques that essentially involve only the finite speed of propagation and domain dependence for the wave equation. In Chapter III we consider the transform that integrates a function supported in the unit disk on the plane over circles centered at the boundary of this disk. As is common for transforms of the Radon type, its range has an in finite co-dimension in standard function spaces. Range descriptions for such transforms are known to be very important for computed tomography, for instance when dealing with incomplete data, error correction, and other issues. A complete range description for the circular Radon transform is obtained. In Chapter IV we investigate implementation of the recently discovered exact backprojection type inversion formulas for the case of spherical acquisition in 3D and approximate inversion formulas in 2D. A numerical simulation of the data acquisition with subsequent reconstructions is made for the Defrise phantom as well as for some other phantoms. Both full and partial scan situations are considered

    Inversion and Symmetries of the Star Transform

    Full text link
    The star transform is a generalized Radon transform mapping a function of two variables to its integrals along "star-shaped" trajectories, which consist of a finite number of rays emanating from a common vertex. Such operators appear in mathematical models of various imaging modalities based on scattering of elementary particles. The paper presents a comprehensive study of the inversion of the star transform. We describe the necessary and sufficient conditions for invertibility of the star transform, introduce a new inversion formula and discuss its stability properties. As an unexpected bonus of our approach, we prove a conjecture from algebraic geometry about the zero sets of elementary symmetric polynomials

    V-line 2-tensor tomography in the plane

    Full text link
    In this article, we introduce and study various V-line transforms (VLTs) defined on symmetric 2-tensor fields in R2\mathbb{R}^2. The operators of interest include the longitudinal, transverse, and mixed VLTs, their integral moments, and the star transform. With the exception of the star transform, all these operators are natural generalizations to the broken-ray trajectories of the corresponding well studied concepts defined for straight-line paths of integration. We characterize the kernels of the VLTs and derive exact formulas for reconstruction of tensor fields from various combinations of these transforms. The star transform on tensor fields is an extension of the corresponding concepts that have been previously studied on vector fields and scalar fields (functions). We describe all injective configurations of the star transform on symmetric 2-tensor fields and derive an exact, closed-form inversion formula for that operator.Comment: 26 pages, 2 figure

    Reconstructions in limited-view thermoacoustic tomography

    Get PDF
    The limited-view problem is studied for thermoacoustic tomography, which is also referred to as photoacoustic or optoacoustic tomography depending on the type of radiation for the induction of acoustic waves. We define a “detection region,” within which all points have sufficient detection views. It is explained analytically and shown numerically that the boundaries of any objects inside this region can be recovered stably. Otherwise some sharp details become blurred. One can identify in advance the parts of the boundaries that will be affected if the detection view is insufficient. If the detector scans along a circle in a two-dimensional case, acquiring a sufficient view might require covering more than a π-, or less than a π-arc of the trajectory depending on the position of the object. Similar results hold in a three-dimensional case. In order to support our theoretical conclusions, three types of reconstruction methods are utilized: a filtered backprojection (FBP) approximate inversion, which is shown to work well for limited-view data, a local-tomography-type reconstruction that emphasizes sharp details (e.g., the boundaries of inclusions), and an iterative algebraic truncated conjugate gradient algorithm used in conjunction with FBP. Computations are conducted for both numerically simulated and experimental data. The reconstructions confirm our theoretical predictions
    corecore